
ACS APPLIED MATERIALS & INTERFACES

High Performance Planar Heterojunction Perovskite Solar Cells with Fullerene Derivatives as the Electron Transport Layer

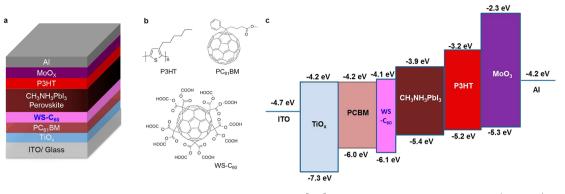
Chang Liu, Kai Wang, Pengcheng Du, Tianyu Meng, Xinfei Yu, Stephen Z. D. Cheng, and Xiong Gong*

College of Polymer Science and Polymer Engineering, University of Akron, Akron, Ohio 44325, United States

ABSTRACT: In this study, we report the utilization of solution-processed high electrical conductive [6,6]-phenyl-C61-butyric acid methyl ester (PC₆₁BM) combined with solution-processed TiO₂ as the electron transport layer (ETL) to overcome extremely low electrical conductivity of solution-processed TiO₂ ETL in planar heterojunction (PHJ) perovskite hybrid solar cells (pero-HSCs). Due to the much more preferable electron extraction and transportation of PC₆₁BM at the cathode side, a tremendously boosted short-circuit current density (J_{SC}), fill factor (FF) and enhanced power conversion efficiency (PCE) are observed. To further address the

wettability issues of perovskite materials on the top of $PC_{61}BM$, water-soluble fullerene derivative is applied to modulate the surface of $PC_{61}BM$. Consequently, further advanced FF with slightly enlarged J_{SC} and open-circuit voltage (V_{OC}) are observed. The resulted PCE is comparable with the meso-superstructured solar cells in which high PCEs can be produced. Our studies certainly provide a simple approach to boost the efficiency of PHJ pero-HSCs.

KEYWORDS: high performance, perovskite solar cells, fullerene derivatives, electron transport layer, electrical conductivity, high-short circuit current


1. INTRODUCTION

In recent years, the organometal halide perovskite, CH₃NH₃PbX₃, where X is a halogen atom (I, Cl, Br, or a combination of some of them) with polycrystalline structure, has been intensively developed for photovoltaic applications.¹ Organometal halide perovskite materials are direct bandgap semiconductors with an approximately ideal bandgap of ~1.55 eV and a high absorption extinction coefficient.²⁻⁴ In addition, perovskite materials also possess ambipolar transport properties that enable both hole and electron transporting in perovskite hybrid solar cells (pero-HSCs).^{5,6} CH₃NH₃PbX₃ was first utilized in dye-sensitized solar cells by Miyasaka and co-workers in 2009.1 Since then, CH3NH3PbX3 has been applied in a variety of other solar cell architectures.⁷⁻¹⁰ On account of the long charge carrier diffusion length of perovskite materials (~1 μ m in CH₃NH₃PbI_{3-x}Cl_x ~100 nm in CH₃NH₃PbI₃),¹¹ planar heterojunction (PHJ) pero-HSCs have been progressively developed, with a power conversion efficiency (PCE) ranging from 3% to over 15% in the past years.^{7-9,12-16} Moreover, the simple fabrication process makes the PHJ construction appealing to large area manufacturing as compared with their meso-superstructured solar cells (MSSCs) counterparts,^{17,18} where the high temperature sintering process of mesoporous metal oxide and the homogeneous infiltration of perovskite materials into the mesoporous electron transport material are major issues. Consequently, high efficiency PHJ pero-HSCs from low-temperature solution processing would be much more advantageous.

However, a severe limitation of the PHJ architecture that restricts the solar cell performance is the extremely low electrical conductivity of the compact TiO_2 layer (~10⁻¹¹S/ cm).¹⁹ Charge carriers transport from perovskite materials to the cathode electrode would be drastically suppressed, insinuating the moderate short-circuit current density (I_{SC}) and fill factor (FF). Furthermore, due to the shorter diffusion length of electrons than that of holes in CH₃NH₃PbI₃ perovskite material $(L_{\rm eff,e-}/L_{\rm eff,h+} < 1)$,^{20,21} a more efficient electron transport layer (ETL) and electron extraction layer (EEL) would be favorable for balancing the electron and hole transport in pero-HSCs, resulting in both enhanced J_{SC} and FF. In addition, the low-temperature sol-gel processed TiO₂ layer showed less conformity, which generates high probability of direct contact between perovskite materials and the indium tin oxide (ITO) cathode, giving rise to massive charge carrier recombination and large leakage current.²² Therefore, addressing the electron transporting issues between a perovskite material and the ETL becomes one of the top priorities for advancing the efficiency of PHJ pero-HSCs.

Herein, we report high performance PHJ pero-HSCs employing [6,6]-phenyl-C61-butyric acid methyl ester (PC₆₁BM) as the ETL. Due to the much higher electrical conductivity of PC₆₁BM ($\sim 10^{-7}$ S/cm)²³ than that ($\sim 10^{-11}$ S/cm) of TiO₂,¹⁹ the charge transfer from CH₃NH₃PbI₃ to the

Received: October 6, 2014 Accepted: December 16, 2014 Published: December 16, 2014

Figure 1. (a) Device structure of perovskite hybrid solar cells incorporated with [6,6]-phenyl- C_{61} -butyric acid methyl ester (P C_{61} BM) as the electron extraction layer, (b) molecular structures of P C_{61} BM, water-soluble fullerene derivative (C_{60} -A c_{10}) and poly(3-hexylthiophene-2,5-diyl) (P3HT) and (c) LUMO and HOMO energy levels of the materials and the work functions of ITO and Al electrodes used to fabricate perovskite hybrid solar cells.

ETL would be much more effective, which is expected to bring about decreased electron/hole recombination at the ETL/ CH₃NH₃PbI₃ interface. As a result, a super high $J_{\rm SC}$ of 26.7 mA/cm² was observed, with a FF of 52.1%, open-circuit voltage ($V_{\rm OC}$) of 0.93 V and corresponding PCE of 13.2%. However, insufficient coverage of perovskite materials arising from the poor wettability of PbI₂ on top of PC₆₁BM emerged as the prime issue that sacrifices the efficiency of pero-HSCs. Thus, to address this problem, a water-soluble fullerene derivative (WS- C_{60}) was applied to re-engineer the surface of the PC₆₁BM layer, which not only serves to improve the wettability of PbI₂ on the top of PC₆₁BM but also occludes the back transfer of holes into the cathode electrode. A high PCE of 14.6% was consequently achieved, with an enhanced $J_{\rm SC}$ of 27.4 mA/cm², $V_{\rm OC}$ of 0.95 V and FF of 56.3%.

2. EXPERIMENTAL DETAILS

2.1. Materials. TiO_2 precursor, tetrabutyl titanate (TBT) and $PC_{61}BM$ were purchased from Sigma-Aldrich and Nano-C Inc., respectively, and used as received without further purification. Watersoluble fullerene derivative (WS- C_{60}) was synthesized in our lab by a method reported elsewhere.²⁴ Lead iodine (PbI₂) was purchased from Alfa-Aesar. Methylammonium iodide (CH₃NH₃I, MAI) was synthesized in our lab using a method reported in the literature.²⁵ The perovskite precursor solution was prepared as the following: PbI₂ and CH₃NH₃I were dissolved in dimethylformamide (DMF) and ethanol with concentrations of 400 mg/mL for PbI₂ and 35 mg/mL for CH₃NH₃I, respectively. All the solutions were heated at 100 °C for around 10 min to make sure both MAI and PbI₂ were fully dissolved.

2.2. Pero-HSCs Fabrication and Characterization. A compact TiO2 layer was deposited on precleaned ITO substrates from tetrabutyl titanate (TBT) isopropyl alcohol solution (concentration 3 vol %), with various thicknesses ranging from 28 to 65 nm, followed by thermal annealing at 90 °C for 60 min in ambient atmosphere. After that, a PC₆₁BM layer of different thickness was casted on the top of the compact TiO_2 layer from dichlorobenzene (*o*-DCB) solution. For the pero-HSCs incorporated with the water-soluble fullerene derivative, WS-C₆₀, \sim 3 nm of WS-C₆₀ was spin-coated on the top of the $PC_{61}BM$ layer from WS- C_{60} /ethanol solution with a concentration of 1 mg/mL, at a spin-speed of 1000 rpm. For the PHJ pero-HSCs fabrication, the PbI2 layer was spin-coated from 400 mg/mL DMF solution at 3000 rpm for 35 s, on the top of the $PC_{61}BM$ or $PC_{61}BM/$ WS-C₆₀ layer, and then the film was dried at 70 °C for 5 min. After the film cooled to room temperature, the MAI layer was spin-coated on the top of the PbI₂ layer from 35 mg/mL ethanol solution at 3000 rpm for 35 s, followed by transferring to a hotplate (100 °C) immediately. After thermal annealing at 100 °C for 2 h, the poly(3-hexylthiophene-2,5-diyl) P3HT layer was deposited from 20 mg/mL o-DCB solution at 1000 rpm for 55 s. Lastly, the pero-HSCs was finished by thermal

evaporating MoO_3 (8 nm) and a luminum (Al) (100 nm). The device area is defined to be 0.045 $\rm cm^2.$

Pero-HSCs were characterized under an AM 1.5 G calibrated solar simulator (Newport model 91160-1000) with the light intensity of 100 mW/cm², which was calibrated by utilizing a monosilicon detector (with a KG-5 visible color filter) of National Renewable Energy Laboratory (NREL) to reduce spectral mismatch. The J-V characteristics of pero-HSCs were recorded using a Keithley 2400 source meter.

The impedance spectroscopy (IS) was obtained using a HP 4194A impedance/gain-phase analyzer, under the illumination of white light with the light intensity of 100 mW/cm², with an oscillating voltage of 50 mV and frequency of 5 Hz to 13 MHz.

2.3. Thin Film Characterizations. Thicknesses of $TiO_{2^{J}} PC_{61}BM$ and WS-C₆₀ were measured by tapping-mode atomic force microscopy (AFM) images using a NanoScope NS3A system (Digital Instrument), as were the surface morphologies of $TiO_{2^{J}} PC_{61}BM$ and WS-C₆₀. It is noteworthy that measuring the thickness of WS-C₆₀, which is under 10 nm, is difficult for direct measurement from AFM images. We prepared 20 mg/mL WS-C₆₀/ethanol solution and spin-coated the film at 1000 rpm, whose thickness was measured to be ~60 nm by AFM images. Therefore, the film thickness from 1 mg/mL WS-C₆₀ solution was estimated to be ~3 nm. Contact angles of PbI₂ on the top of PC₆₁BM and the top of WS-C₆₀/PC₆₁BM were measured by a KRUSS DSA100 instrument. Photoluminescence (PL) spectra were obtained with a 532 nm pulsed laser as the excitation source at a frequency of 9.743 MHz.

3. RESULTS AND DISCUSSION

Figure 1a,b presents the device structure of pero-HSCs and molecular structures of PC₆₁BM, WS-C₆₀ and P3HT; Figure 1c displays the energy levels of the materials and workfunctions of ITO and Al electrodes used for fabrication of pero-HSCs. The tremendously increased electrical conductivity of PC₆₁BM $(\sim 10^{-7} \text{ S/cm})^{23}$ over that of TiO₂ $(\sim 10^{-11} \text{ S/cm})^{19}$ combined with efficient ~0.3 eV lowest unoccupied molecular orbital (LUMO) offset between CH₃NH₃PbI₃ and PC₆₁BM,²⁶ is expected to bring about both improved J_{SC} and FF. For the hole transport layer (HTL), considering the widely used holetransporting material 2,2',7,7'-tetrakis(N,N-dip-methoxyphenylamine)-9,9'-spirobifluorene (spiro-OMeTAD) needs to be dried in air,²⁷ which will sacrifice the performance of pero-HSCs, we utilize solution-processed P3HT and thermalevaporated MoO₃ as the HTL and the electron-blocking layer (EBL), respectively.

We note that during the measurement of all pero-HSCs, a light-soaking effect on enhancing PCEs was observed.^{28–31} As compared with the J_{SC} from the pero-HSCs without any illumination, we found that the J_{SC} was enhanced over 30% from the pero-HSCs with a "conventional" device structure of

ITO/TiO₂/CH₃NH₃PbI₃/P3HT/MoO₃/Al (Figure 1a) after the pero-HSCs was illuminated about 5–10 min; under the same illumination condition, however, the J_{SC} kept a constant for the pero-HSCs with a "inverted" device structure of ITO/ PEDOT:PSS/CH₃NH₃PbI₃/PCBM/Al. Thus, we conduct the J-V characteristics of pero-HSCs after the pero-HSCs was illuminated about 10 min.^{28–31}

The performance of pero-HSCs was optimized by tuning the thickness of the PC₆₁BM layer. The dependencies of PCE, J_{SC} , V_{OC} and FF on the thickness of PC₆₁BM are shown in Figure 2.

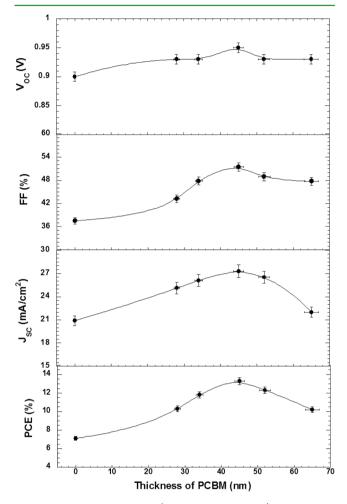


Figure 2. Device performance (J_{SC}, V_{OC}) FF and PCE) of perovskite hybrid solar cells with a structure of $ITO/TiO_2/PC_{61}BM/CH_3NH_3PbI_3/P3HT/MOO_3/Al$ versus the thickness of PC₆₁BM layer.

All pero-HSCs possess similar V_{OC} 's, but with different J_{SC} 's and FFs, and consequently different PCEs. Both J_{SC} and FF are dramatically enhanced along with increased thickness of PC₆₁BM at first, reaching the highest PCE of 13.3% with a super high J_{SC} of 27.3 mA/cm², but then dropped with further raising the thickness of the PC₆₁BM layer. The first rising stage for both J_{SC} and FF from thickness values of ~28 to ~45 nm was attributed to the drastically augmented electrical conductivity of PC₆₁BM than that of TiO₂, leading to more efficient electron transportation from perovskite material to the cathode electrode. However, further enhancing the thickness of PC₆₁BM layer will increase the optical interference between the incident light and the reflected light, in which the destructive interference will weaken the incident light and consequently results in diminished light reached at the CH₃NH₃PbI₃ layer.

Therefore, we can observe a largely decreased $J_{\rm SC}$ and slightly decreased FF. In addition, given that $PC_{61}BM$ also serves as a passivating layer on the top of TiO₂ (as can be elucidated by AFM images in the later context), the dark current is expected to be reduced owing to the diminished leakage current. Therefore, a slightly increased $V_{\rm OC}$ from 0.90 to 0.95 V can be observed from pero-HSCs incorporating with PC₆₁BM with different thicknesses.

Even though the PCEs of pero-HSCs are dramatically improved with the incorporation of $PC_{61}BM$ as the ETL, the poor wettability of PbI_2 on the top of $PC_{61}BM$ would be another issue for further improvement of PCEs. As it is evidenced from Figure 3a, a large contact angle of 42.7°

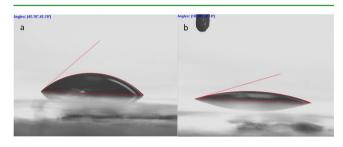
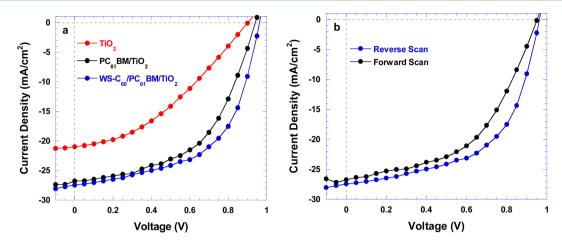



Figure 3. Contact angles of PbI_2 on the top of (a) $PC_{61}BM$ layer and (b) $WS-C_{60}/PC_{61}BM$ layer.

observed at the $PC_{61}BM/PbI_2$ interface would lead to insufficient coverage of perovskite materials on the top of the $PC_{61}BM$ layer, which generates a large leakage current and consequently results in an inferior FF. To overcome this problem, the water-soluble fullerene derivative WS-C₆₀ is used to re-engineer the surface of the $PC_{61}BM$ layer. It can be seen clearly in Figure 3b that full coverage of perovskite materials is expected due to the much reduced contact angle of 18.1° at the WS-C₆₀/PbI₂ interface. In addition, WS-C₆₀ also acts as the hole blocking layer (HBL) to occlude the holes to be back transferred to $PC_{61}BM$, reducing the electron-hole recombination at peroskite/PC₆₁BM interface,³² which contributes to higher J_{SC} and FF as well.

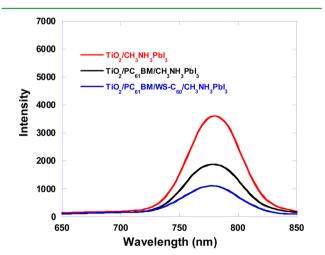
Figure 4a illustrates the J-V characteristics of pero-HSCs with the structures of ITO/TiO₂/CH₃NH₃PbI₃/P3HT/MoO₃/ Al, ITO/TiO₂/PC₆₁BM/CH₃NH₃PbI₃/P3HT/MoO₃/Al and ITO/TiO₂/PC₆₁BM/WS-C₆₀/CH₃NH₃PbI₃/P3HT/MoO₃/Al. All the devices are measured under reverse scan (from V_{OC} to $J_{\rm SC}$). The pristine pero-HSCs show a $V_{\rm OC}$ of 0.90 V, $J_{\rm SC}$ of 20.9 mA/cm², FF of 37.5% and a corresponding PCE of 7.1%. The pero-HSCs incorporated with $PC_{61}BM$ exhibit slightly enhanced $V_{\rm OC}$ of 0.93 V, dramatically enhanced $J_{\rm SC}$ of 26.7 mA/cm², FF of 52.1% and consequently an enhanced PCE of 13.2%. For the pero-HSCs incorporating WS-C₆₀ re-engineered PC₆₁BM, the most remarkable enhancement is embodied by FF, rising to 56.3%, with a slightly increased J_{SC} (27.4 mA/cm²) and $V_{\rm OC}$ (0.95 V); as a result, a high PCE of 14.6% is obtained. It is noteworthy that the slightly enhanced $V_{\rm OC}$ is in agreement with the lower highest occupied molecular orbital (HOMO) level of WS-C₆₀ than that of $PC_{61}BM$ (as shown in Figure 1c). A larger energy offset between the HOMO of ETL and the LUMO of CH₃NH₃PbI₃ is consequently formed, which is proportional to $V_{\rm OC}$. Such a high PCE is comparable to that observed from pero-HSCs with a MSSCs structure, in which high PCEs can be generated.^{17,18}

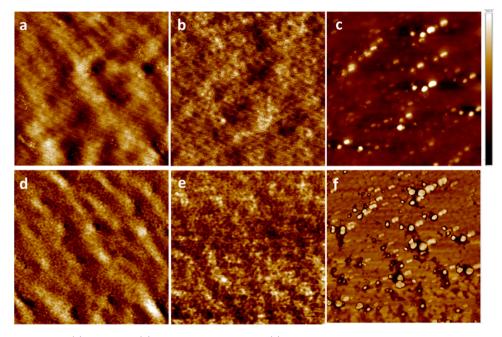
To study the hysteresis effects of devices with the structure $ITO/TiO_2/PC_{61}BM/WS-C_{60}/CH_3NH_3PbI_3/P3HT/MoO_3/Al$,

Figure 4. (a) Current–voltage characteristics of perovskite hybrid solar cells with the structures of pero-HSCs with device structures: $ITO/TiO_2/CH_3NH_3PbI_3/P3HT/MoO_3/AI$ (represented as TiO_2), $ITO/TiO_2/PC_{61}BM/CH_3NH_3PbI_3/P3HT/MoO_3/AI$ (represented as $PC_{61}BM/TiO_2$), and $ITO/TiO_2/PC_{61}BM/WS-C_{60}/CH_3NH_3PbI_3/P3HT/MoO_3/AI$ (represented as $WS-C_{60}/PC_{61}BM/TiO_2$); (b) *J–V* characteristics under forward and reverse scan directions for the pero-HSCs with a device structure of $ITO/TiO_2/PC_{61}BM/WS-C_{60}/CH_3NH_3PbI_3/P3HT/MoO_3/AI$.

both forward (from $J_{\rm SC}$ to $V_{\rm OC}$) and reverse scan directions were conducted (as shown in Figure 4b). As shown above, pero-HSCs incorporating WS-C₆₀ re-engineered PC₆₁BM exhibited PCE of 14.6%, with $V_{\rm OC}$ 0.95 V, $J_{\rm SC}$ 27.4 mA/cm² and FF 56.3%. Under forward scan, the same device showed $V_{\rm OC}$ 0.94 V, $J_{\rm SC}$ 26.7 mA/cm², FF 51.3% and consequently PCE 12.9%. These are relatively consistent PCEs under different scan directions, which indicates a comparatively small hysteresis effect in the pero-HSCs incorporating WS-C₆₀ re-engineered PC₆₁BM and consequently a decent device performance.

To have a better understanding of the largely increased J_{SC} from the pero-HSCs incorporating with PC₆₁BM as the ETL, photoluminescent (PL) properties of three different thin films, TiO₂/CH₃NH₃PbI₃, TiO₂/PC₆₁BM/CH₃NH₃PbI₃ and TiO₂/PC₆₁BM/WS-C₆₀/CH₃NH₃PbI₃ are studied. Figure 5 shows the PL spectra of TiO₂/PC₆₁BM/WS-C₆₀/CH₃NH₃PbI₃, TiO₂/PC₆₁BM/WS-C₆₀/CH₃NH₃PbI₃. It was found that a more strikingly quenching effect was in TiO₂/PC₆₁BM/CH₃NH₃PbI₃. This indicates a much more efficient electron transport at the PC₆₁BM/CH₃NH₃PbI₃ interface over that at the TiO₂/




Figure 5. Photoluminescence (PL) spectra of $TiO_2/CH_3NH_3PbI_3$, $TiO_2/PC_{61}BM/CH_3NH_3PbI_3$ and $TiO_2/PC_{61}BM/WS-C_{60}/CH_3NH_3PbI_3$ films.

 $\rm CH_3NH_3PbI_3$ interface, confirming the role of higher electrical conductive $\rm PC_{61}BM$ for favoring the electron extraction at the ETL/perovskite material interface. Remarkably, an even greater quenching effect is observed in the $\rm TiO_2/PC_{61}BM/WS-C_{60}/CH_3NH_3PbI_3$ film, which demonstrates that the more homogeneous perovskite film formation ensures larger interface between the fullerene derivatives and $\rm CH_3NH_3PbI_3$.

To verify the hypothesis that the TiO₂ surface is passivated by the PC₆₁BM layer, AFM was used to study the surface morphology of the TiO₂ film, TiO₂/PC₆₁BM film and TiO₂/ PC₆₁BM/WS-C₆₀ film. The height AFM images are shown in Figure 6a–c, and phase images are shown in Figure 6e–g. It is obviously that sol–gel processed TiO₂ showed rather uneven surface with a relatively large root-mean-square roughness (RMS) of 3.5 nm. Upon the passivation with PC₆₁BM, the surface becomes quite smoother, with remarkably reduced RMS of 0.25 nm. Outcome of the ameliorated surface morphology was the much lessened leakage current, which consequently results in drastically boosted J_{SC} FF and minor increased V_{OC} .³³ Through further modification of PC₆₁BM surface with WS-C₆₀ very smooth film can be observed, which is also beneficial for enhancement in solar cell performance.

Scanning electron microscopy (SEM) images were carried out to study the thin film morphology of the CH₃NH₃PbI₃ layer influenced by the WS-C₆₀ re-engineered PC₆₁BM layer. The PC₆₁BM/CH₃NH₃PbI₃ thin film demonstrated clearly incomplete coverage of CH₃NH₃PbI₃ on the top of the PC₆₁BM layer (shown in Figure 7a), which is due to the poor wettability of CH₃NH₃PbI₃ on PC₆₁BM. In clear contrast, upon the surface re-engineering with WS-C₆₀, the wettability dramatically improved, leading to a complete coverage of CH₃NH₃PbI₃ on the top of PC₆₁BM layer. Consequently, Figure 7b exhibits a much denser and more homogeneous film for the PC₆₁BM/WS-C₆₀/CH₃NH₃PbI₃ layer, which results in the slightly improved J_{SC} and largely enhanced FF.

The electrical conductivities of all pero-HSCs are further investigated by AC impedance spectroscopy (IS), which can provide detailed electrical properties of pero-HSCs that cannot be determined in direct current measurement.³⁴ Figure 8 presents the IS spectra of ITO/TiO₂/CH₃NH₃PbI₃/P3HT/MoO₃/Al, ITO/TiO₂/PC₆₁BM/CH₃NH₃PbI₃/P3HT/MoO₃/Al and ITO/TiO₂/PC₆₁BM/WS-C₆₀/CH₃NH₃PbI₃/P3HT/

Figure 6. AFM height images of (a) TiO_2 film, (b) $TiO_2/PC_{61}BM$ film and (c) $TiO_2/PC_{61}BM/WS-C_{60}$ film; AFM phase images of (d) TiO_2 film, (e) $TiO_2/PC_{61}BM$ film and (f) $TiO_2/PC_{61}BM/WS-C_{60}$ film.

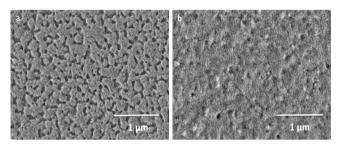
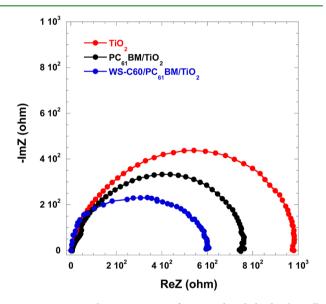



Figure 7. SEM images of (a) $TiO_2/PC_{61}BM/CH_3NH_3PbI_3$ film and (b) $TiO_2/PC_{61}BM/WS-C_{60}/CH_3NH_3PbI_3$ film.

 MoO_3/Al . The internal series resistance (R_s) is composed of the sheet resistance (R_{SH}) of the electrodes, the charge-transfer resistance (R_{CT}) inside the perovskite thin film and at perovskite material/ETL (HTL) interfaces. Because all pero-HSCs possess the same device structure, the R_{SH} was assumed to be the same. The only difference is the R_{CT} , which arises from the different electron transport at ETL/perovskite interface. The R_S of ITO/TiO₂/CH₃NH₃PbI₃/P3HT/MoO₃/ Al is 976 Ω , which is lowered to 750 Ω from ITO/TiO₂/ PC₆₁BM/CH₃NH₃PbI₃/P3HT/MoO₃/Al, and further reduced to 600 Ω from ITO/TiO₂/PC₆₁BM/WS-C₆₀/CH₃NH₃PbI₃/ $P3HT/MoO_3/Al$. These results confirm the role of $PC_{61}BM$ as a much more efficient ETL than that of TiO₂. The efficient ETL would benefit electron extraction and transporting from perovskite materials to the cathode electrode. The reduced $R_{\rm S}$ from ITO/TiO₂/PC₆₁BM/WS-C₆₀/CH₃NH₃PbI₃/P3HT/ MoO_3/Al is attributed to the improved wettability of PbI₂ on the top of $PC_{61}BM$ by WS- C_{60} , which brings about full coverage of the perovskite material and consequently better contact between perovskite materials and PC₆₁BM ETL, resulting in high PCE.

4. CONCLUSION

In conclusion, we reported the utilization of high electrical conductive $PC_{61}BM$ as the electron transport layer in PHJ

Figure 8. Nyquist plots at $V \approx V_{OC}$ for perovskite hybrid solar cells with the structures of ITO/TiO₂/CH₃NH₃PbI₃/P3HT/MoO₃/Al (represented as TiO₂), ITO/TiO₂/PC₆₁BM/CH₃NH₃PbI₃/P3HT/MoO₃/Al (represented as PC₆₁BM/TiO₂) and ITO/TiO₂/PC₆₁BM/WS-C₆₀/CH₃NH₃PbI₃/P3HT/MoO₃/Al (represented as WS-C₆₀/PC₆₁BM/TiO₂).

pero-HSCs. Through tremendously boosted J_{SC} and FF values, enhanced PCEs are obtained. By utilizing the water-soluble fullerene derivative, WS-C₆₀, to settle the wettability issues of PbI₂ on the top of PC₆₁BM, further enlarged FF values, with minor enhanced J_{SC} and V_{OC} values and a high PCE of 14.6%, are obtained. Such a high PCE is comparable to that observed from pero-HSCs with meso-superstructures, whereas a high PCE is typically noticed. Our studies certainly provide a simple approach to boost the efficiency of PHJ pero-HSCs.

ACS Applied Materials & Interfaces

AUTHOR INFORMATION

Corresponding Author

*X. Gong. E-mail: xgong@uakron.edu. Fax: (330) 972-3406.

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

The authors thank National Science Foundation (Grant No. 1351785).

REFERENCES

(1) Kojima, A.; Teshima, K.; Shirai, Y.; Miyasaka, T. Organometal Halide Perovskites as Visible-Light Sensitizers for Photovoltaic Cells. J. Am. Chem. Soc. 2009, 131, 6050–6051.

(2) Im, J. H.; Lee, C. R.; Lee, J. W.; Park, S. W.; Park, N. G. 6.5% Efficient Perovskite Quantum-Dot-Sensitized Solar Cell. *Nanoscale* **2011**, *3*, 4088–4093.

(3) Lee, M. M.; Teuscher, J.; Miyasaka, T.; Murakami, T. N.; Snaith, H. J. Efficient Hybrid Solar Cells Based on Meso-Superstructured Organometal Halide Perovskites. *Science* **2012**, 338, 643–647.

(4) Snaith, H. J. Perovskites: The Emergence of a New Era for Low-Cost, High-Efficiency Solar Cells. J. Phys. Chem. Lett. 2013, 4, 3623–3630.

(5) Chung, I.; Lee, B.; He, J.; Chang, R. P. H.; Kanatzidis, M. G. All-Solid-State Dye-Sensitized Solar Cells with High Efficiency. *Nature* **2012**, *485*, 486–489.

(6) Etgar, L.; Gao, P.; Xue, Z.; Peng, Q.; Chandiran, A. K.; Liu, B.; Nazeeruddin, M. K.; Grätzel, M. Mesoscopic $CH_3NH_3PbI_3/TiO_2$ Heterojunction Solar Cells. J. Am. Chem. Soc. **2012**, 134, 17396–17399.

(7) Kim, H.-S.; Lee, J.-W.; Yantara, N.; Boix, P. P.; Kulkarni, S. A.; Mhaisalkar, S.; Grätzel, M.; Park, N.-G. High Efficiency Solid-State Sensitized Solar Cell Based on Submicrometer Rutile TiO₂ Nanorod and CH₃NH₃PbI₃ Perovskite Sensitizer. *Nano Lett.* **2013**, *13*, 2412– 2417.

(8) Abrusci, A.; Stranks, S. D.; Docampo, P.; Yip, H.-L.; Jen, A. K. Y.; Snaith, H. J. High-Performance Perovskite-Polymer Hybrid Solar Cells via Electronic Coupling with Fullerene Monolayers. *Nano Lett.* **2013**, *13*, 3124–3128.

(9) Noh, J. H.; Im, S. H.; Heo, J. H.; Mandal, T. N.; Seok, S. I. Chemical Management for Colorful, Efficient, and Stable Inorganic– Organic Hybrid Nanostructured Solar Cells. *Nano Lett.* **2013**, *13*, 1764–1769.

(10) Lv, S.; Han, L.; Xiao, J.; Zhu, L.; Shi, J.; Wei, H.; Xu, Y.; Dong, J.; Xu, X.; Li, D.; Wang, S.; Luo, Y.; Meng, Q.; Li, X. Mesoscopic $TiO_2/CH_3NH_3PbI_3$ Perovskite Solar Cells with New Hole-Transporting Materials Containing Butadiene Derivatives. *Chem. Commun.* **2014**, *50*, 6931–6934.

(11) Stranks, S. D.; Eperon, G. E.; Grancini, G.; Menelaou, C.; Alcocer, M. J. P.; Leijtens, T.; Herz, L. M.; Petrozza, A.; Snaith, H. J. Electron-Hole Diffusion Lengths Exceeding 1 micrometer in an Organometal Trihalide Perovskite Absorber. *Science* **2013**, *342*, 341– 344.

(12) Mei, A.; Li, X.; Liu, L.; Ku, Z.; Liu, T.; Rong, Y.; Xu, M.; Hu, M.; Chen, J.; Yang, Y.; Grätzel, M.; Han, H. A Hole-Conductor-Free, Fully Printable Mesoscopic Perovskite Solar Cell with High Stability. *Science* **2014**, 345, 295–298.

(13) Qiu, J.; Qiu, Y.; Yan, K.; Zhong, M.; Mu, C.; Yan, H.; Yan, S. All-Solid-State Hybrid Solar Cells Based on a New Organometal Halideperovskite Sensitizer and One-Dimensional TiO₂ Nanowire Arrays. *Nanoscale* **2013**, *5*, 3245–3248.

(14) Cai, B.; Xing, Y.; Yang, Z.; Zhang, W.-H.; Qiu, J. High Performance Hybrid Solar Cells Sensitized by Organolead Halide Perovskites. *Energy Environ. Sci.* **2013**, *6*, 1480–1485.

(15) Burschka, J.; Pellet, N.; Moon, S.-J.; Humphry-Baker, R.; Gao, P.; Nazeeruddin, M. K.; Grätzel, M. Sequential Deposition as a Route

to High-Performance Perovskite-Sensitized Solar Cells. *Nature* 2013, 499, 316–319.

(16) Liu, M.; Johnston, M. B.; Snaith, H. J. Efficient Planar Heterojunction Perovskite Solar Cells by Vapour Deposition. *Nature* **2013**, *501*, 395–398.

(17) Eperon, G. E.; Burlakov, V. M.; Docampo, P.; Goriely, A.; Snaith, H. J. Morphological Control for High Performance, Solution-Processed Planar Heterojunction Perovskite Solar Cells. *Adv. Funct. Mater.* **2014**, *24*, 151–157.

(18) Conings, B.; Baeten, L.; De Dobbelaere, C.; D'Haen, J.; Manca, J.; Boyen, H.-G. Perovskite-based Hybrid Solar Cells Exceeding 10% Efficiency with High Reproducibility Using a Thin Film Sandwich Approach. *Adv. Mater.* **2014**, *26*, 2041–2046.

(19) Tang, H.; Prasad, K.; Sanjinès, R.; Schmid, P. E.; Lévy, F. Electrical and Optical Properties of TiO_2 Anatase Thin Films. *J. Appl. Phys.* **1994**, 75, 2042.

(20) Edri, E.; Kirmayer, S.; Henning, A.; Mukhopadhyay, S.; Gartsman, K.; Rosenwaks, Y.; Hodes, G.; Cahen, D. Why Lead Methylammonium Tri-Iodide Perovskite-based Solar Cells Require a Mesoporous Electron Transporting Scaffold (but Not Necessarily a Hole Conductor). *Nano Lett.* **2014**, *14*, 1000–1004.

(21) Edri, E.; Kirmayer, S.; Mukhopadhyay, S.; Gartsman, K.; Hodes, G.; Cahen, D. Elucidating the Charge Carrier Separation and Working Mechanism of $CH_3NH_3PbI_{3.X}Cl_X$ Perovskite Solar Cells. *Nat. Commun.* **2014**, DOI: 10.1038/ncomms4461.

(22) Ke, K.; Fang, G.; Wang, J.; Qin, P.; Tao, H.; Lei, H.; Liu, Q.; Dai, X.; Zhao, X. Perovskite Solar Cell with an Efficient TiO_2 Compact Film. ACS Appl. Mater. Interfaces **2014**, *6*, 15959–15965.

(23) He, P.; Xu, Y.; Zhang, X.; Zhen, X.; Li, W. Electrical Conductivity Studies of a Pure C_{60} Single Crystal. J. Phys.: Condens. Matter **1993**, 5, 7013.

(24) Yu, X.; Zhang, W.-B.; Yue, K.; Li, X.; Liu, H.; Xin, Y.; Wang, C.-L.; Wesdemiotis, C.; Cheng, S. Z. D. Giant Molecular Shape Amphiphiles Based on Polystyrene–Hydrophilic [60]Fullerene Conjugates: Click Synthesis, Solution Self-Assembly, and Phase Behavior. J. Am. Chem. Soc. 2012, 134, 7780–7787.

(25) Xiao, Z. G.; Bi, C.; Shao, Y. C.; Dong, Q. F.; Wang, Q.; Yuan, Y. B.; Wang, C. G.; Gao, Y. L.; Huang, J. S. Efficient, High Yield Perovskite Photovoltaic Devices Grown by Interdiffusion of Solution-Processed Precursor Stacking Layers. *Energy Environ. Sci.* 2014, *7*, 2619–2623.

(26) Yang, B.; Yuan, Y.; Sharma, P.; Poddar, S.; Korlacki, R.; Ducharme, S.; Gruverman, A.; Saraf, R.; Huang, J. Tuning the Energy Level Offset between Donor and Acceptor with Ferroelectric Dipole Layers for Increased Efficiency in Bilayer Organic Photovoltaic Cells. *Adv. Mater.* **2012**, *24*, 1455–1460.

(27) Jeon, N. J.; Lee, H. G.; Kim, Y. C.; Seo, J.; Noh, J. H.; Lee, J.; Seok, S. I. *o*-Methoxy Substituents in Spiro-OMeTAD for Efficient Inorganic–Organic Hybrid Perovskite Solar Cells. *J. Am. Chem. Soc.* **2014**, *136*, 7837–7840.

(28) Yang, L.; Xu, B.; Bi, D.; Tian, H.; Boschloo, G.; Sun, L.; Hagfeldt, A.; Johansson, E. M. J. Initial Light Soaking Treatment Enables Hole Transport Material to Outperform Spiro-OMeTAD in Solid-State Dye-Sensitized Solar Cells. J. Am. Chem. Soc. 2013, 135, 7378–7385.

(29) O'Regan, B.; Schwartz, D. T. Large Enhancement in Photocurrent Efficiency Caused by UV Illumination of the Dye-Sensitized Heterojunction $TiO_2/RuLL'NCS/CuSCN$: Initiation and Potential Mechanisms. *Chem. Mater.* **1998**, *10*, 1501–1509.

(30) Tiwana, P.; Docampo, P.; Johnston, M. B.; Herz, L. M.; Snaith, H. J. The Origin of an Efficiency Improving "Light Soaking" Effect in SnO₂ Based Solid-State Dye-Sensitized Solar Cells. *Energy Environ. Sci.* **2012**, *5*, 9566–9573.

(31) Borup, K. A.; de Boor, J.; Wang, H.; Drymiotis, F.; Gascoin, F.; Shi, X.; Chen, L.; Fedorov, M. I.; Muller, E.; Iversena, B. B.; Snyder, G. J. Measuring Thermoelectric Transport Properties of Materials. *Energy Environ. Sci.* **2014**, DOI: 10.1039/c4ee01320d.

(32) Lai, Y.-Y.; Shih, P.-I.; Li, Y.-P.; Tsai, C.-E.; Wu, J.-S.; Cheng, Y.-J.; Hsu, C.-S. Interface Engineering to Enhance the Efficiency of Conventional Polymer Solar Cells by Alcohol-/Water-Soluble C_{60} Materials Doped with Alkali Carbonates. ACS Appl. Mater. Interfaces **2013**, *5*, 5122–5128.

(33) Guo, X.; Zhou, N.; Lou, S. J.; Smith, J.; Tice, D. B.; Hennek, J. W.; Ortiz, R. P.; Navarrete, J. T. L.; Li, S.; Strzalka, J.; Chen, L. X.; Chang, R. P. H.; Facchetti, A.; Marks, T. J. Polymer Solar Cells with Enhanced Fill Factors. *Nat. Photonics* **2013**, *7*, 825–833.

(34) Dualeh, A.; Moehl, T.; Tétreault, N.; Teuscher, J.; Gao, P.; Nazeeruddin, M. K.; Grätzel, M. Impedance Spectroscopic Analysis of Lead Iodide Perovskite-Sensitized Solid-State Solar Cells. *ACS Nano* **2014**, *8*, 362–373.